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Introduction

One of the most powerful tools in cell-biological research is
the fluorescence microscope. When combined with appropri-
ate fluorescent probes, this instrument measures the amount
and location of specific biomolecules in cells. The resulting in-
formation has been central to developing our current under-
standing of molecular mechanism in cell biology. It is thus nat-
ural to use fluorescence microscopy as a tool in the discovery
and characterization of biologically active small molecules. In
this article, I will discuss two ways we have done this at the In-
stitute of Chemistry and Cell Biology (ICCB): phenotypic screen-
ing and cytological profiling. Both applications require collect-
ing and analyzing of images of cells from large numbers of in-
dividual experiments, and thus call for automation of both
image capture and image analysis. The outline of a typical au-
tomated microscopy experiment is shown in Figure 1. Instru-
mentation for automated microscopy has only recently been
introduced, and there have been relatively few publications on
this method. For recent reviews that focus on the use of auto-
mated microscopy in small molecule discovery see refs. [1–3].

Phenotypic Screening

A central goal of ICCB has been to discover small molecules
with novel mechanisms of biological action, which can be
used as tools in cell-biology research, and to catalyze thera-
peutic drug discovery by industry groups. Our main tool has
been to screen large libraries of drug-like, and natural product-
like, small molecules. We have used a combination of pure pro-
tein and biochemical screens, and phenotypic screens in which
we assayed for specific alterations to cell physiology. In pheno-
typic screens, cells or small organisms are cultured in 384-well
plates and treated with small molecules. After a time interval
appropriate for the biology, each well is scored for the desired
physiological change. This method requires the active small
molecules (“hits”) to be cell-permeable, to be active in the con-
text of the cell environment, and to exhibit some degree of
specificity in their biological actions. It can also be used to

target proteins that might be unknown or cannot be assayed
in pure form. The main disadvantage of phenotypic screening
is that the target(s) of the hit molecule must be determined
(“target ID”) ; this can be time consuming and unpredictable.
Because of its conceptual similarity to classic genetic screening,
phenotypic screening combined with target ID is sometimes
called “forwards chemical genetics”.[4]

Automated fluorescence microscopy provides a powerful
tool for phenotypic screening. Fluorescence microscopy with
appropriate probes has the capability to quantify essentially
any physiological change that occurs at the single-cell level.
Furthermore it can reveal, in the same assay well, undesired or
unexpected effects, including toxicity and interesting changes
in cell physiology that were not anticipated in the design of
the screen. Because of this potentially large information con-
tent, screening by automated microscopy is sometimes refer-
red to as “high-content” screening (e.g. ref. [3]). Fluorescence
microscopy is also highly sensitive in the sense that small num-
bers of cells can be used, and biomolecules present at low
concentration can be detected.

Figure 2 shows a representative phenotypic screen for small
molecules that perturb mitosis. We initiated this screen in a
plate reader format, using a luminescent immunoassay for
measuring mitotic index. This led to the discovery of monas-
trol, an inhibitor of the mitotic kinesin Eg5.[5] Monastrol was
the first small molecule known to arrest cells in mitosis by a
mechanism other than poisoning microtubules, and potent
Eg5 inhibitors are now in clinical trials for cancer treatment.
We appreciated the potential for an automated microscopy
version of the mitosis screen when we observed mitotic arrest
as an unanticipated effect in a screen for inhibitors of cell mi-
gration.[6] That screen used microscopy of fixed cells migrating

[a] Prof. T. J. Mitchison
Dept. Systems Biology and Institute of Chemistry and Cell Biology
Harvard Medical School, Boston, MA 02115 (USA)
Fax: (+ 1) 617-432-3702
E-mail : timothy mitchison@hms.harvard.edu

Automated fluorescence microscopy provides a powerful tool for
analyzing the physiological state of single cells with high
throughput and high information content. Here I discuss two
types of experiments in which this technology was used to dis-
cover and characterize bioactive small molecules. In phenotypic-
screening experiments, the goal is to find “hits” with specific
effects on cells by screening large libraries of small molecules. An
example is screening for small molecules that perturb mitosis by

novel mechanisms. In cytological-profiling experiments, the goal
is to characterize the bioactivity of a limited number of small
molecules in considerable depth, and thus understand their
mechanism and toxicities at the cellular level. I discuss an exam-
ple in which 100 small molecules with known bioactivity were
profiled by using multiple fluorescent probes, and clustered into
mechanistic classes by automated statistical analysis.
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into a wound that were fixed and stained for actin and DNA.
Mitosis inhibitors revealed themselves by causing cell rounding
in the actin image. That experience illustrates the power of mi-
croscopy to reveal interesting, unexpected effects, due to its
high information content. The automated microscopy version
of the mitosis screen was used to discover a new, more potent
Eg5 inhibitor,[7] and we are currently using it to find and char-
acterize small molecules that perturb mitosis by additional
mechanisms.

A number of phenotypic screens of small molecule libraries
by automated microscopy have been run at ICCB (Table 1).
Most of the screens in Table 1 were scored by eye, and thus
gave a relatively qualitative measure of physiological change
induced by small molecules. This reflects the challenges in de-
veloping robust image-analysis algorithms, and a desire from
biologists to get the result quickly. Quantifying physiological
changes at the single-cell level by automated microscopy re-
mains a challenge, though it will become easier as automated

microscopes improve in terms of reliable automatic focusing
and better signal-to-noise ratios in images. Commercial soft-
ware is now available for standard image-analysis tasks, such
as quantifying the amount of fluorescence per cell, nuclear
import etc. , and for some more sophisticated tasks, such as

Figure 1. Schematic of an automated microscopy experiment. Cells are added
to 384-well, clear-bottom, microtiter plates in medium and cultured overnight
to allow attachment. Small molecules are added from DMSO stock solutions by
pin transfer. Final concentration of small molecule is ~30 mm for screening, or
a dilution series for profiling. The cells are incubated for a time appropriate for
the desired biological changes to occur, typically 1–24 h. A cross-linking fixative
(typically formaldehyde in aqueous buffer) is added to stop the biological pro-
cess and immobilize cell proteins. After a wash that includes detergent to per-
meabilize cell membranes, fluorescent probes are added. These typically include
a blue-fluorescing DNA dye and antibodies to cell proteins that are detected by
secondary antibodies labeled with green or red fluorochromes. After a wash,
the plate is imaged in each fluorescent channel, or may be stored for several
weeks at 4 8C. Images are captured by using an automated fluorescence micro-
scope equipped with x, y drives and automated focus, and stored. Images are
then scored by eye for desired and undesired/unexpected biological effects, or
automated image analysis is used to measure parameters that describe the cell
state.

Figure 2. Phenotypic screen for small molecules that perturb mitosis. HeLa
(human cancer) cells were synchronized in G1/S in bulk by using a standard
double thymidine block protocol. They were plated into clear-bottom 384-well
plates during the second thymidine treatment, released into fresh medium, and
small molecules were added to a final concentration of ~30 mm by pin transfer
of stock solutions in DMSO. They were fixed 16 h later, sufficient time for unaf-
fected cells to progress through S, G2, M, and cytokinesis into G1 of the next
cell cycle. Compounds that disrupt mitosis tend to activate the spindle check
point, and arrest the cells in M. The phenotypic effect of mitosis-arresting com-
pounds was scored by eye on the basis of DNA, tubulin, and actin staining. To
date, three mitotic-arrest phenotypes have been characterized at the molecular
level : 1) lack of microtubules due to inhibition of tubulin, 2) microtubule aggre-
gates due to stabilization of microtubules, and 3) monopolar spindle formation
due to Eg5 inhibition. See refs. [5–7].

Table 1. A sample of phenotypic screens of small molecule libraries by
using automated microscopy run at ICCB.

Biology Outline of method Ref.

Mitotic spindle See Figure 2 [7]
Cytokinesis Add SMs for 20 h.[a,b] Stain for DNA, total cyto-

plasm. Score for binucleate cells.
[8]

Centrosome
duplication

Add SMs to cells in hydroxyurea. Stain for g tubu-
lin, DNA, actin. Score for number of centrosomes.

[9]

Cell migration Wound cell monolayer, add SMs,[a] fix after 6 h.
Stain for DNA, actin. Score by morphology of the
wound margin.

[6]

Secretory
pathway

Express VSV-G(ts)-GFP fusion. Accumulate in ER at
39 8C, Release at 32 8C. Score by GFP localization.

[10]

NFAT pathway Express NFAT-GFP, add SMs,[a] followed by iono-
mycin to trigger pathway; fix. Score for fraction of
signal in the nucleus.

[11]

Nuclear export Express FOXO1-GFP in cells lacking PTEN. Add
SMs,[a] incubate, Fix. Score for fraction of signal in
the nucleus.

[12]

[a] SM = small molecules. [b] A genome-wide RNAi library was screened in
parallel, 36 h incubation.
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scoring morphology and cytotoxicity. However, it is an ongoing
research challenge to determine how much information rele-
vant to small-molecule effects is contained in images of cells
and how this information can be automatically extracted. Ex-
amples of automated scoring of imaging data are described in
refs. [9, 13] , and I will discuss a new approach to broadly ex-
tracting relevant information below.

Cytological Profiling

It became evident from our screening projects that fluorescent
images of cells contained far more information than that we
were actually using to score the screen. This point was exem-
plified when we used small molecules with known mecha-
nisms to calibrate cell responses in a centrosome-duplication
screen.[9] Those observations prompted the question, how
much information on cell physiology is present in fluorescence
images of cells, and how can we extract this information to un-
derstand the phenotypic effect of a small molecule? To begin
addressing this question systematically, we developed a cyto-
logical-profiling approach.[14] Use of automated microscopy to
profile small-molecule action had been investigated previously
by using a limited number of probes and scoring for expected
cell effects.[9, 13, 15] Our idea was to use a larger number of
probes, to exhaustively quantify images on a cell-by-cell basis,
and to investigate the statistical significance of the resulting
numerical data in a hypothesis-independent manner. We ex-
pected that the results could quantify expected and unexpect-
ed effects of small molecules and provide information that was
complementary to biochemical data.

As a test set to develop cytological profiling of small mole-
cule action, we assembled 90 small molecules with known bio-
logical effects (“drugs”), choosing drugs expected to perturb
human cancer cells in culture and including several groups of
two to seven drugs with similar mechanisms. These included
topoisomerase inhibitors, ribosome poisons, histone deacetyl-
ase inhibitors, microtubule poisons, and kinase inhibitors with
various specificities. We added ten more drugs as blinded sam-
ples, choosing either drugs from the test set at different con-
centrations, or bioactive small molecules of unknown mecha-
nism. These blinded samples were used to evaluate the suc-
cess of our method. A key feature in the design of the experi-
ment was dose-response information. Small molecules are ex-
pected to bind to more targets in cells as their concentration
increases. Even for binding to a single target, various cell path-
ways may respond differentially to the degree of saturation of
that target. Cell responses at a phenotypic level are thus ex-
pected to change, and become more complex, as dose increas-
es. We used a concentration range of 66 pm–35 mm for each
drug, which typically covered the range between no effect at
the low dose and the onset of nonspecific effects at the high
dose. We chose one time point (20 h) and one cell line (HeLa,
a human cancer cell) to keep the study manageable. Additional
time points and different cell types would add mechanistic in-
formation in future studies. The 20 hour time point is long
enough that secondary responses to a drug could develop,

mediated by transcriptional changes, for example. For the cy-
tological-profiling experiment, cells were cultured in 384-well
plates, treated with small molecules for 20 h, then fixed and
stained with various fluorescent probes.

A key question in a profiling experiment of this kind is what
probes to use, and what descriptors to collect. This question
can be thought of in two ways, hypothesis-dependent and
hypothesis-independent. In the former, one would choose
probes and descriptors to look for specific biological effects
that were expected in the experiment, such as toxicity, differ-
entiation, mitotic arrest, etc. In the latter, one would choose a
broad range of probes to cover both expected and unexpect-
ed biology, and measure as many descriptors as possible for
each probe, without trying to predict which probe would be
most useful, or which descriptors had known biological mean-
ing. Because our drugs covered a large range of mechanisms,
and because we hoped to detect “off-target” effects (effects
due to perturbation of cell systems that do not correspond to
the expected mechanism), we chose the hypothesis-indepen-
dent approach. We selected probes somewhat arbitrarily so as
to visualize a broad range of nuclear and cytoskeletal struc-
tures, as well as key signaling pathways (Figure 3, below). They
included antibodies to phosphorylated states of signaling pro-
teins, which provide information on pathway activity. For each
probe, we collected all the single-cell descriptors that were
easy to measure, including integrated fluorescence signal,
average signal, variance of signal, cytoplasm-to-nucleus ratio,
shape factors, number of spots, etc. In some cases the descrip-
tor might have obvious biological meaning (e.g. , integrated
signal from the DNA stain DAPI, which measures DNA content
per cell), and in other cases it might not (e.g. variance of DAPI
signal). Our plan was to use clustering analysis to tell us retro-
spectively which probes and descriptors provided useful infor-
mation on drug mechanism, and which did not. In practice we
found that all the probes and descriptors were useful, and
omitting any of them reduced the power of our analysis. We
were surprised by this apparent nonredundancy of our descrip-
tors, and further investigation is required to determine why de-
scriptors with no obvious biological meaning are contributing
useful data.

Using automated microscopy, we collected nine images per
well (~8000 cells in total). This number was chosen so as to
broadly sample each well, including the middle and sides, in
case cell response was variable across the well. The cells were
approximately confluent; this made it difficult to identify their
outlines. Instead we identified individual nuclei, and then de-
fined the cytoplasm as an annulus around each nucleus. For
each cell and probe, we measured several descriptors that de-
scribed fluorescence in the nucleus and cytoplasm, for a total
of 93 descriptors from 11 probes. The full study was performed
in duplicate and generated ~109 descriptor measurements in
total. We then developed a statistical method to convert de-
scriptor measurements into Z-scores for differences between a
drug-treated well and control wells (DMSO-treated wells on
the same 384-well plate) to normalize for any plate-to-plate
variation in staining. These Z-scores were visualized as heat
plots of Z-value versus drug concentration for each descriptor.
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Figure 3 illustrates the heat plot for camptothecin, a topoiso-
merase inhibitor that caused DNA-strand breaks. To the left
(low drug concentrations) most wells are the same as the con-

trol, with occasional colored pixels representing noise. As drug
concentration increases, many descriptors become significantly
different from the controls. This presentation allows us to visu-
alize 93 separate dose-response curves in a single image, and
we collected 100 such profiles in duplicate in the full study.
For ~60 drugs that caused strong changes in a number of de-
scriptors, the heat plot was very similar in the duplicate experi-
ment, as measured by eye and by comparison of the duplicate
sets by using unsupervised clustering, and we averaged Z-
scores for further analysis. For ~40 drugs that caused few
changes, the profiles were dominated by a small number of
bright pixels at random positions. These were not reproducible
between duplicates, and presumably represent noise intro-
duced in processing or imaging the wells. These drugs either
lack targets in HeLa cells, or perturbation of their targets did
not cause biological effects that were detected by our probes.
They were omitted from further analysis.

The next issue was how to meaningfully compare profiles
for different drugs. When comparing drugs, phenotypic effect
and potency are separate issues. It is easy to measure potency
from profiles like Figure 3, since the EC50 is simply the titration
value at which many of the descriptors change from no differ-
ent from control to significantly different. A sharp transition of
this type was observed for all of the drugs that gave a strong
signal (~60). To compare phenotypes while ignoring potency,
we developed a titration-invariant similarity score (TISS), based
on comparing pairs of heat plots over a series of left and right
shifts on the concentration axis. The shift with maximum simi-
larity was used to compute the TISS score, and the degree of
similarity was used for unsupervised clustering (Figure 4). We
then applied two criteria to test if our clustering had produced
useful information. First, we asked if it had grouped together
drugs that are known to have similar effects on cells, even
though their structures are very different. The literature mecha-
nism for each drug is annotated on the left in Figure 4, and
success in grouping drugs by mechanism is demonstrated
when boxes on one vertical line are grouped together. We
were highly successful in clustering drugs with several mecha-
nisms, including DNA damaging drugs, histone deacetylase in-
hibitors, and microtubule poisons. In one case, ribosome inhib-
itors, a group of related drugs that are potent and presumably
fairly specific failed to cluster well. In this case, we suspect that
the cell response to ribosome inhibition differs according to
the detailed biochemical mechanism of each inhibitor. Second,
we asked how well the blinded compounds (denoted by blue
bars in Figure 4) clustered with their duplicate from the test
set or with similar drugs, and found that eight out of eight of
the blinded drugs of known mechanism did so. Since blinded
drugs at one concentration clustered next to the same drug at
a different concentration, this test demonstrates the success of
TISS, and proves that we could infer mechanism of a novel
drug if we had a similar drug to compare it to. For the two
bioactive compounds of truly unknown mechanism, one (aus-
tocystin, a fungal poison) grouped with RNA and protein-syn-
thesis inhibitors, and one (concentramide, a synthetic com-
pound that perturbs zebrafish development) did not generate
enough nonzero Z-scores to cluster; this suggests that HeLa

Figure 3. Dose-response profile for campthothecin from a cytological-profiling
experiment. This heat plot profiles the response of HeLa cells to increasing
concentrations of the topoisomerase inhibitor camptothecin. On the y axis are
a series of descriptors measured on a cell-by-cell basis. The text describes the
macromolecule that the probes bind to. Fluorescent small molecules were used
to detect DNA (DAPI) and actin (rhodamine-phalloidin). Antibodies labeled with
fluorochromes were used in an indirect immunofluorescence protocol to detect
the other proteins. Phospho-x refers to an antibody that binds specifically to a
phosphorylated epitope on the protein. On the x axis are increasing drug con-
centrations (13 concentrations in a 3 � dilution series from 66 pm to 35 mm).
The color intensity represents the Z-score from a statistical test comparing de-
scriptor values from cells in a treated well to cells in control wells on the same
plate. Red indicates a positive deviation from control values, and green a neg-
ative deviation. Black indicates no statistically significant difference from con-
trols. Each pixel in the heat plot represents the average Z-score for single wells
from two duplicate experiments. For each well, nine nonoverlapping images
were collected, and descriptors measured for ~8000 cells. Each well was
stained with DAPI (blue channel) plus two other probes (green and red chan-
nels), so a single experiment required five sets of plates to cover all 11 probes.
Note that at low drug concentrations most descriptors are not different from
controls (Z-score~0), while at high drug concentration many descriptors are
different from controls. The approximate EC50 value (potency) of the drug is
that at which many descriptors change from like control to different. For
details see ref. [14] .
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cells might not express its target. Although this project is only
a first effort toward systematic cytological profiling, we con-
clude that the approach will be useful for measuring drug effi-
cacy and specificity at the level of cellular phenotype in both
academic and commercial drug discovery.

To further illustrate the kind of information cytological profil-
ing plus TISS provided in this experiment, consider the case of
cyclin-dependent kinase (CDK) inhibitors. Five CDK inhibitors
were included in our study, representing all of the drugs in this
class sold by Calbiochem (Scheme 1). Because of strong ho-
mology in the kinase gene family, ATP-competitive kinase in-
hibitors typically inhibit a spectrum of different kinases, with
different EC50s; this makes therapeutic drug development in

this area challenging. Kinase inhibitors are thus expected to
show complex dose-response behavior at the phenotypic level,
as increasing concentration causes inhibition of more kinases
in the cell. Cytological profiling as a function of dose should
be especially useful in measuring this kind of phenotypic com-
plexity. In our study, three of the CDK inhibitors (green boxes
in Figure 4 and Scheme 1) clustered close together; this indi-
cated similar phenotypic effects as a function of dose, while
two others (red boxes) clustered away from the green group
and from each other. These data suggest that the green mole-
cules share a similar spectrum of targets in the cell, while the
red molecules have different target spectra. Inspection of the
structures rationalizes this observation, since the green mole-

Figure 4. Comparing phenotypic effects of drugs by clustering analysis. Dose-response profiles (as shown in Figure 3) for ~60 drugs that gave strong responses
were compared by using an algorithm that measures similarity independently of potency (Titration Invariant Similarity Score). TISS scores were used for unsuper-
vised clustering. A dendrogram of similarity is shown top right, and a matrix plot representing the TISS values for all pair-wise comparisons in the middle. Darker
pixels indicate stronger similarity. In the line plot on the left, each drug is assigned to a mechanistic class according to the literature and manufacturer’s informa-
tion. Clustering of squares on a single line indicates success in grouping the drugs in that class. Note that the clustering succeeded in grouping together all mem-
bers of several mechanistic classes, including topoisomerase inhibitors, histone deacetylase inhibitors, and microtubule drugs. The blue squares represent drugs that
were blinded during the analysis, and used to measure success in clustering. The colored boxes indicate 5 cyclin-dependent kinase inhibitors whose structures are
shown in Scheme 1. For details see ref. [14].
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cules are highly related in structure, while the red molecules
are quite different. In this case, phenotypic effects mapped to
chemical structure in a predictable way, but it is easy to imag-
ine a different result in a structure–activity experiment, with a
small change in chemical structure causing a large change in
phenotype. Data like those in Figure 4 and Scheme 1 could be
useful during drug development, to relate biochemical mea-
surements to phenotypic effects in structure–activity studies, a
key step in early-stage therapeutic drug discovery.

Conclusion and Prospects

As the instrumentation for automated microscopy improves, it
will become possible to collect larger data sets of high-quality
images of fixed cells and also to image large numbers of cells
expressing GFP-tagged proteins over time in order to observe
dynamic behavior directly. Although many challenges remain,
software for automated image analysis is also improving rapid-
ly; this allows us to convert large data sets of cell images into
numbers that can be used to score for a desired effect in
screening applications, or to broadly describe cell phenotypes
in profiling applications. What does the future hold in terms of
discoveries that might be made with these technologies?

In the area of therapeutic drug discovery, it is clear that au-
tomated microscopy can be used effectively for primary high-
throughput screening (HTS) of chemical libraries. Phenotypic
screening is currently less popular than pure protein screening
in commercial drug discovery, despite the fact that the initial
leads for many therapeutic drug classes historically came from
some kind of phenotypic information. The high information
content of automated microscopy, the possibility of screening
on small numbers of human primary cells, and the potential
for discovery of new targets as well as new ligands make the

technology worth considering for primary HTS. Cyto-
logical profiling, in which the number of small mole-
cules investigated is smaller, but the information con-
tent is much higher, is well suited for the hit-to-lead
phase of commercial drug discovery; here hundreds
or perhaps thousands of small molecules must be
evaluated rapidly for their potential to serve as leads
for medicinal chemistry. It should be especially useful
for relating biochemical activity to phenotypic effects
in programs in which specificity is a challenge, such
as kinase and histone deacetylase inhibitors. Cytolog-
ical profiling provides information that is in principle
complementary to other multidimensional profiling
methods, such as transcript profiling,[16] comparison
of cytotoxicity across multiple cell lines,[17] and syn-
thetic interaction analysis.[18] Combing these types of
data-rich analyses should help solve the difficult
problem of predicting the biological effect of drugs
prior to clinical trails.

Automated microscopy will be equally useful in
scoring genetic- or pseudo-genetic screens, notably
genome-wide RNAi screens that are now becoming
feasible in Drosophila and human cells. The human
genome contains ~25 000 genes, a small number by

HTS standards, but large for conventional microscopy. We re-
cently performed a screen for inhibition of cytokinesis, using
small-molecule and genome-wide RNAi libraries in parallel,
scoring for accumulation of binucleate cells.[8] Application of
profiling methods to RNAi screens will add rich, quantitative
annotation to databases of gene function. Perhaps the area
where automated microscopy will have the largest impact is
systems biology, the study of integrated behavior of whole
biological pathways. Since systems biology is concerned with
kinetic behavior of pathways in cells, and variation in response
between different cells, analysis of individual cells over time is
important, and automated microscopy makes this feasible
across sample sizes that achieve statistical significance. Sys-
tems-level understanding will be essential if we hope to pre-
dict the effects of small molecules on cells (and people) in
silico, and thus lower the time and cost of therapeutic drug
discovery. Automated microscopy is only one of the tools that
will be needed in the near future to improve the rate of dis-
covery of bioactive small molecules, and their optimization
into therapeutic drugs, but I hope this article makes the case
that it will be an important one.
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Scheme 1. Structures of the five different cyclin-dependent kinase (CDK) inhibitors used in
the cytological profiling study. The three drugs in the green box clustered close together
(green boxes in Figure 4), while the two drugs in the red boxes clustered far from the green-
box drugs and from each other (red boxes in Figure 4). Thus the green-box drugs had very
similar phenotypic effects, while the red-box drugs had diverse effects. Note: the green-box
drugs are similar to each other in structure, while the red-box drugs are structurally diverse.
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